Fiber Optic Cables in Emergency Military Tactical Communication

2 min read

Fiber optic cables are a combination of optical fibers, which are thin strands of glass or plastic having two layers, the inner core, and the outer cladding. Light can be used as the means of communication in these optic fibers using the principle of total internal reflection. Fiber optic cables, since their discovery, are being used as the main source for long distance data transfer, due to their advantages over the conventional methods of wired transmission. They transmit data with less signal loss and have the capability to transfer the data having high bandwidth. Fiber optic cables are very less prone to electromagnetic induction, compared to conventional copper cables. Also, they are difficult to tap, as tapping may lead to the stoppage of the entire signal, and thus, can be monitored and traced easily. Due to the numerous advantages of fiber optic cables, they find their way into numerous applications. Their use has been increasing in military communication, in military aircraft for data transfer, internal signaling circuits, and many other applications.

Extensive research is in progress for the use of these fiber optic cables as a model of emergency communication, when all other means of communication are disrupted. US military’s DARPA (Defense Advanced Research Projects Agency) is currently working on emergency connectivity restoring process, which uses fiber optic cables for its functioning. This program is called TUNA (Tactical Undersea Network Architecture). This program is intended to restore the tactical connectivity for the US armed forces in conditions, where the traditional mode of communication and tactical networking are disrupted by any means. TUNA’s outcome is only intended for emergency purposes only, and not for permanent communication.

TUNA uses an innovative technology, which uses undersea fiber optic cables for the process of restoring communication in a contested environment. If the modes of communication are disrupted in an emergency, buoys (specially designed objects that can float in water) are dropped from ships or aircraft onto the sea surface. Each buoy consists of an RF (Radio Frequency) transmitter and a power system, supported by the WEBS (Wave Energy Buoy that Self-Deploys). WEBS convert wave energy into electricity to power the buoy. It consists of two floats, which remain afloat on the surface of the water and are rotated by the movement of the passing waves. The differential and rotary motion are then transmitted using gearboxes to electrical generators, where power is generated. The buoys are connected by very thin fiber optic cables, which are capable of carrying a large amount of data. They are specially designed to survive in the hardest of situations in the open sea for a minimum of 30 days, providing communications until the primary mode of communication is restored.

The development and testing processes are carried out in two phases. The first phase of the program, which is already completed, involved the processes of modelling, simulation, and at-sea tests of specially developed fiber optic cables and the power systems of the buoys. In  the second and final phase that the program is undergoing, an  end-to-end system is being designed and implemented.  This system has to be tested and evaluated in laboratory and at-sea. Once the two phases are completed, a new and advanced mode of emergency communication, which is anticipated to change the face of communication systems is poised be at the doorstep of the military.

Access the Full Report to know more about each Key Players, and their competition.

About the Market

The market for military fiber optic cables is expected to grow with a CAGR of XX% during the forecast period, due to the increasing need for data security and the advantages of communication through fiber optic cables over other modes of communication.

Get the FULL REPORT from Mordor Intelligence to know more about the Military Fiber Optic Cables Market

Mordor Intelligence is a market intelligence and advisory firm operating in 14 industry segments, serving over 600 clients worldwide.

Harsha Harshavardhan Dabbiru is currently working as a research associate at Mordor Intelligence LLP, in the field of Aerospace and Defense. He has completed his Bachelor’s degree in Mechanical Engineering and has done various projects in aerospace during the course.
Harsha Harshavardhan Dabbiru is currently working as a research associate at Mordor Intelligence LLP, in the field of Aerospace and Defense. He has completed his Bachelor’s degree in Mechanical Engineering and has done various projects in aerospace during the course.  

Drifting from Hydraulic to Electric Actuators: Aircraft…

Traditionally, the Aerospace and Defence industry used hydraulic and pneumatic actuation systems, owing to low cost and high-power densities. Nevertheless, in recent times, due...
Kashyap G Kashyap G
2 min read

Aircraft Collision Avoidance Systems: A lifesaver in…

Earlier, there were a fewer mid-air aircraft collisions due to the fact that there were very less number of aircraft in those days. However,...
Harsha Harsha
2 min read


At the start of the 20th century, flying was only a remote possibility for humans, which could only be imagined. Nevertheless, in 1903, the...
Harsha Harsha
2 min read

The Emerging Military Cybersecurity Market

The world is more interconnected than ever before. However, for all the advantages that connectivity brings, there is also an increased risk of fraud,...
Divya Basuti Divya Basuti
2 min read

Enter your details..

Name error message

Email error message

Phone error message

Textarea error message